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Abstract. Molecular dynamics studies of the temperature dependent properties of copper 
have been carried out. The constant pressure and constant temperature (NPT) MD method 
has been used together with the Finnis-Sinclair many-body potential. On the basis only 
of the room temperature properties the behaviour of solid and liquid copper over wide 
temperature range have been simulated and compared with experiment. 

1. Introduction 

It is well known that any pair potential is insufficient when describing most of the 
properties of the metallic systems. All pairwise models lead, for example, to the Cauchy 
relation Cl2 = C44, contrary to experiments (e.g., for Cu CI2/Cd4 = 1.5, for Au about 
3.7). Pure pair interactions also imply that the surface relaxes outwards instead of 
inwards as is observed in experiment. From the theoretical calculation (e.g., Heine and 
Weaire 1970) it has been found that only few percents of a cohesive energy of a crystal 
are due to the pair interactions and the dominant fraction must be described by many- 
body interactions or by a volume dependent part. 

The most important failures of the two-body models are summarised in e.g. ,  Ercolessi 
et a1 1988. There are a lot of papers analysing various models of interactions overcoming 
these difficulties. For more recent reviews see e.g., Finnis et a1 1988, Vitek 1988, 
Ercolessi et a1 1988. Maeda et al (1982) proposed a potential including an additional, 
phenomenological volume-dependent term. That potential has been used successfully 
in describing defects in metals. The method with better justification was proposed by 
Finnis and Sinclair (1984). Their model (hereafter denoted as FS), a kind of adaptation 
of the Embedded Atom Method (Daw and Baskes 1984), primarily applied to transition 
metals (Finnis and Sinclair 1984) and later developed for the noble metals (Ackland et 
a1 1987) is used in the present study. In their approach the total energy of a metallic 
system is composed of a repulsive pair interaction (ion repulsion) and an attractive 
many-body term, so called ‘gluing term’, caused by conducting electrons. 

There are also calculations from first principles (e.g., Heine and Weaire 1970) and 
very interesting MD simulations from first principles (Car and Parrinello 1985) but they 
require huge computing resources. 

Even the relatively simple form of the FS potential requires computer numerical 
analysis for detailed studies. There are two alternative methods; the Monte Carlo (MC) 
method, in which properties of a system in question are analysed by averaging over 
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configurations generated in a statistical manner, and the molecular dynamics (MD) 
methods, in which we establish the system with the proper Hamiltonian, calculate the 
Hamiltonian equation of motion and calculate the time evolution of the system. Then 
time averages of various quantities are calculated. It can be shown that such averaging 
is equivalent to averaging over ensembles, provided the correct form of the Hamiltonian 
has been chosen. The problem lies in finding the Hamiltonian that generates the required 
statistical ensemble. 

Andersen (1980) put forward the idea of the MD method equivalent to the NPE 
ensemble. This method is applied in the present study but is modified by introduction 
of the constant temperature technique proposed by Nose (1984). The Andersen method 
has been applied to metals by e.g., Walker et a1 (1986), and to the study of the melting 
and freezing of argon by Chokappa and Clancy (1987a, b). In the latter case only a pair 
(Lennard-Jones) potential was used. 

Because the aim of this paper is to study the temperature dependent properties of 
pure copper in the solid and liquid states, the volume change should be taken into 
account, so the NPT method is applied. 

2. Interactions 

Total energy of system U is composed of a standard pair term and a many-body term 

where u(R)  is a central pair potential and f, q are functions describing many-body 
interactions. Summations are carried out over all atoms. The many-body term is a 
version of the Embedded Atom Method (Daw and Baskes 1984) proposed by Finnis 
and Sinclair (1984). The extensive discussion of formula (1) is performed in Ackland et 
a1 (1987) and will not be repeated here. 

The many-body term can be also interpreted as a local, local-configuration-depen- 
dent, pair potential. The effective potential of the interaction of atoms i and j can be 
approximated as (when ignoring second and higher order derivatives offl 

All further calculations are classical, the quantum effects being included in the above 
form of the potential. It is also assumed that the potentials are temperature and structure 
independent. The main advantage of the FS formalism is that, in spite of the fact that 
potentials are more accurate and much better justified than any pair potentials, the 
increase in calculation time is relatively small. It should be noted that Daw and Baskes 
(1984) method has been also applied for liquid metals (Foiles 1985). 

3. Molecular dynamics method 

In order to study any temperature-dependent property (especially phase transform- 
ations) traditional NVE methods (with a constant number of particles, volume and 
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internal energy) are not very good. The NPT (constant number of particles, pressure and 
temperature) approach generates typical experimental conditions and is more suitable 
for studying phenomena with volume changes like melting. 

The constant pressure method was derived by Andersen (1980) and later developed 
by Parrinello and Rahman (1980, 1981) for changes even in cell shape. The Parinello 
and Rahman method has been used for metallic system by Walker et a1 (1986). It was 
proved that the Hamiltonian in which the computational cell size L is an additional 
variable generates the NPH (with constant enthalpy) ensemble (to within an accuracy of 

The Hamiltonian leads to equations of motion for particles and L. Using the cor- 
respondence between the real and scaled systems, the trajectories in the real system can 
be evaluated. The Andersen method has been recently criticised (Cleveland 1988), but 
the criticism concerns only the case with great changes in the shape of a computational 
cell, so does not apply to the system analysed here. 

The second difficulty in the molecular dynamics studies is how to keep temperature 
constant. The simplest and earliest method is a momentum scaling procedure (e.g., 
Woodcock 1971), in which the velocities are scaled at each iteration step to maintain 
kinetic energy constant. But in this way any fluctuations of the total kinetic energy are 
suppressed. Andersen (1980) proposed the combination of MD and MC methods, in which 
particles velocities were randomly changed by stochastic collisions. In this method 
trajectories in phase space are discontinuous. 

The comparison of various methods (including the ‘damped force method’ used by 
Chokappa and Clancy 1987a, b in their studies) was carried out by Brown and Clarke 
(1984) but later Nos6 (1984) unified formulations of constant temperature methods. 
In his method the canonical distribution both in coordinate and momentum space is 
generated. He  introduced in his approach, which is similar to Andersen’s method of 
scaling coordinates, the additional degree of freedom s and the Hamiltonian contains 
an additional term 

1” 

II:/2Q + gkTln s (4) 
where k is Boltzmann’s constant, II, the conjugate momentum, Q the pseudo-mass and 
g = 3N, 3N + 1, 3N - 1 depending on the calculation method. The second term in (4) 
works as a heat reservoir, s being a quantity which scales time, so the total Hamiltonian 
has the following form: 

where the correspondence between real ( r ,  n, t )  and scaled ( q , p ,  z) variables is 

ri = Lq, 

vi = p , l L s  

In formula ( 5 )  Q, Ware the pseudo-masses associated with s and L ,  respectively, nL, II, 
are the conjugate momenta and m the mass of particles. 
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Nose proved that the logarithmic form of the term containing s is essential for 
generating the canonical ensemble. The Hamiltonian equations of motion in virtual 
variables are 

q i  = dH/dpi = pi/mL2s2 

S = dH/dII ,  = II,/Q 

1 [ p:/mL2s2 - gkT h , = - - = -  d H  
ds s I 

(7) 

x ( Q i j ) 2  - 3pL2. 

When (7) with (6) are used to generate trajectories, the time averages of any intensive 
quantity correspond to the system with pressure p and temperature T. 

Of course the MD method cannot be applied for studying a phase transformation 
itself (mainly because of limited computational cell size which limits the correlation 
length) but can be used for determining equilibrium states at temperatures close to the 
critical one. 

4. Potentials 

The potentials from Ackland et a1 1987 were used and copper has been chosen as a test 
system. The potentials were assumed to have a form (after Ackland et a1 1987) 

f ( q )  = d/cp (results from tight bonding theory of cohesion 
and discussed fully in Ackland’s paper) 

6 

U ( T )  = E ~ k ( r k  - ~ ) ~ H ( r k  - r )  
k = l  

2 

(P(r) = E A k ( R k  - r)3H(Rk - r ,  
k = l  

where 

0 x < o  
H ( x ) =  i, x > o .  

There is no cut-off radius as usually used for the standard Lennard-Jones potential and 
derivatives are always continuous. This is a great advantage of the above potentials, 
from the point of view of numerical calculations as well as physical interpretation, over 
the standard Lennard-Jones potential with the cut-off radius used usually (e.g., Verlet 
1967, Rahman and Clancy 1964, Chokappa 1987a, b). For calculating the values of 
parameters a l ,  . . . , a6, A l ,  A 2  the following experimental quantities were used: lattice 
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Figure 1. Pair potential ( - - - - - )  and effective pair 
potential in ideal FCC (-) for copper. 

Figure2. Dependence of L on number of iteration 
steps n at T = 1200 K.  

constant, cohesive energy, elastic constants, vacancy formation energy, stacking fault 
energy and the pressure-volume relation. The detailed description of the method of 
fitting and the values of parameters can be found in Ackland et a1 (1987). They used 
experimental data at room temperature without using the temperature dependence of 
any quantity. I have not modified their parameters by using data at 0 K,  mainly because 
not all data are available and the change in values from 0-300 K is rather small. I also 
prefer to use original Ackland potential and verify its applicability. 

The shape of U ( Y )  is presented in figure 1 together with effective pair potential 
corresponding to ideal FCC structure (with no atomic displacement from lattice sites) 
calculated according to (2). 

5. Calculations 

The equations of motion were integrated using the modified ‘leap-frog’ algorithm. The 
mass of particles was equal to the mass of copper atoms, parameter W was set to 20 (in 
reduced units); other values were also tried but calculations are weakly influenced by 
this value; the wide analysis of various factors influence on MD results was carried out by 
Chokappa and Clancy (1987a). In the further calculations and plots the length unit equal 
to the lattice constant at 0 Kis used. In Ackland eta1 (1987) they did not take into account 
kinetic contribution so one should use experimental data at 0 K. The time step used in 
calculation was s. Trajectories of 256 (in some cases 864) copper particles were 
calculated using the periodic boundary conditions; in this way the behaviour of an infinite 
set of atoms having no surface is simulated. At  any temperature the initial configuration 
had a pure FCC structure without any displacement from lattice sites with a random 
velocity distribution corresponding to the required temperature. The starting value of 
L was 1. 

A simulation at any given temperature consisted of an ‘equilibrisation’ during about 
1000 time steps followed by runs of 2000-20000 time steps when time averages of various 
quantities were calculated. I did not find any large difference in results obtained using 
the Nose method and simple scaling velocities. For reasons of numerical convenience 
the first equilibrisation at any temperature was conducted using only scaling of velocities; 
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Figure 3. Dependence of L on temperature T. Figure 4. Dependence of U on temperature T 

if the analysed system is far from equilibrium, the Nose method results in very high 
temperature fluctuations. After reaching equilibrium the Nose method was used to give 
the correct canonical distributions. The final results do not depend on number of 
particles. When comparing the simulation of 256 and 864 particles the only weak 
difference is in fluctuations range, whereas the increase in calculation time is consider- 
able. 

6. Results and discussion 

In figure 2 the typical dependence of L on the number of iteration steps is presented. 
The equilibrium value of L is reached after about 20 steps and after this L oscillates 
around its equilibrium value. 

In figure 3 the temperature dependence of L is shown and in figure 4 the temperature 
dependence of U. The well marked phase transition is visible at about 1565 K. 

The radial distribution functions (figures 5 and 6) corresponding to selected tem- 
peratures indicate clearly (contrary to results reported by Chokappa and Clancy (1987a), 
who did not find any rapid changes in g(R)  on melting) that melting does occur. For 
comparison theg(r) for ideal FCC is shown in figure 5(a). The melting does not correspond 
to the rapid changes in all peaks in the distribution function. From 0 K up to 3000 K 
there is a continuous broadening of the peaks but at the analysed transition peaks 
corresponding to the second and fifth coordination cells in FCC disappear very rapidly 
between 1560 and 1570 K. There is also a rapid change in volume (figure 3) and in 
internal energy (figure 4). The radial distribution function above 1570 K has the usual 
shape for liquids (e.g., Hansen and McDonald 1976). Of course for a purely random 
distribution of atoms g should be always equal to 1. 

From figure 3 the thermal expansion coefficient for the solid phase and the liquid 
just after melting can be derived (for higher temperature volume is not a linear function 
of temperature). Also the volume change on melting and the heat of melting can be 
calculated. Using the Einstein relation for diffusion coefficients 

D = lim (r2)/6t (9) 
t' z 

the diffusion coefficients for the liquid were calculated (for the solid phase diffusion is 
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Figure 6 .  Collected radial distribution functions at various temperatures. The broken lines 
denote coordination zones for ideal FCC at 0 K. Curve A, T = 200 K;  curve B, T = 500 K;  
curve C, T = 1000 K ;  curve D, T = 1560 K ;  curve E, T = 1570 K; curve F, T = 2100 K.  

Table 1. Simulated and experimental data for copper 

Quantity Exp. MD 

Thermal expansion (solid) ( x  10-6) 17.0a 22 

Volume change on melting (%I 4 . 4 b  4.4 
Thermal expansion (liquid) ( X  10-4) l . O b  1.3 

Melting temperature (K) 1356' 1565 
Heat of melting (kJ mol-') 13' 13 
Activation energy of self diffusion in liquid (kJ mol-') 40d 50 

a Brandes (1983) 
Faber (1972) 
Chase (1983) 
Henderson and Yang (1961) (but for another temperature range) 

too slow to carry out such an analysis). From the In D versus 1/T plot (figure 7) the 
activation energy for the diffusion in liquid was calculated. All these data are collected 
in table 1 together with corresponding experimental values. 

The main disagreement with the experimental data is the value of the melting 
temperature. The model predicts a temperature about 15% too high. The same effect 
has been reported for argon by the molecular dynamic studies using the LJ potential 
(Chokappa and Clancy 1987a). It could have been caused by the lack of a surface in MD 
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Figure 7. In D versus 1/T, where D is the diffusion 
coefficient calculated from mean square dis- 
placement. 2 L 6 8 

1 / T ( K")  

calculations. The temperature resulting from MD studies is rather the temperature of 
mechanical instability of the system in question. Similar overheating results from MD 
studies of Ag, Au, Ni (Holender 1990a). 

The fact that such overheating is due to the MD method is also justified by MD 
simulations of systems with a free surface (Holender 1990b). It has also been shown 
experimentally that under special conditions (elimination of free surface influence) 
metal could be overheated. 

7. Summarv 

It can be concluded that Finnis' many-body potential combined with Andersen's mol- 
ecular dynamic method gives a quite good description of the properties of copper in the 
solid as well as the liquid state. 

It should be stressed once more that the potential parameters were derived without 
taking into account any temperature dependence of the physical properties and the main 
task of the paper was to show the applicability of the FS potential in analysing the 
temperature dependent behaviour of physical properties. 

The present work illustrates the usefulness of the MD method for studying properties 
of metals. Even though used potentials are not derived from first principles, the MD 
method may not only explain some experimental results but also give some under- 
standing of complex phenomena on an atomic scale (e.g., melting and thermal expansion 
in this study, the diffusion mechanism (Doan 1988)). 
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